Bernaerts Katrien
Maastricht University, Netherlands
Title: Increasing the solubility range of polyesters by tuning their microstructure with comonomers.
Biography
Biography: Bernaerts Katrien
Abstract
ω-Pentadecalactone (PDL) is a biobased 16-membered macrolactone that can be derived from renewable resources. Its regular structure makes it highly crystalline and thus interesting as a biobased replacement for linear low density polyethylene. However, its solubility is very limited (chloroform) which hinders the use of PDL polymers in other applications requiring large solubility range. Copolymerization with a branched lactone is one way to reduce crystallinity because it is expected to disrupt the co-polyesters’ microstructure. Nevertheless, it has been shown that the microstructure of PDL-based co-polyesters varies depending on the comonomer structure. A block copolyester is obtained with branched lactones while a random structure is obtained with unsubstituted lactones of various size.
It was attempted to break the crystallinity of PDL-based copolyesters with a view of increasing their solubility range. Therefore, PDL was copolymerized with the branched and biobased δ-undecalactone (UDL), whose homopolymer is amorphous. In order to assess the microstructure (random or block-like), monomer distribution within the PDL-co-UDL polyesters was assessed by 13C NMR. It was observed that crystallinity of the copolyesters was decreased but not suppressed as measured by DSC, partially because they did not display a fully random monomer order. Hansen solubility parameter determination however showed that the solubility range of the copolyesters was improved compared to PDL homopolymers.
Recent Publications
- Bernaerts, K.; Mestrom, L.; De Wildeman, S., Biocatalysis toward New Biobased Building Blocks for Polymeric Materials. In Applied Biocatalysis: From Fundamental Science to Industrial Applications, Liese A, Hilterhaus L, Kettling U, Antranikian G, Eds.; Wiley-VCH, 2016; pp 464
- Delgove, M.A.F.; Luchies, J.; Wauters, I.; Deroover, G.G.P., De Wildeman, S.M.A., Increasing the solubility range of polyesters by tuning their microstructure with comonomers, Polymer Chemistry, DOI: 10.1039/c7py00976c
- Wróblewska, A.A.; Bernaerts, K.V.; De Wildeman S.M.A., Rigid, bio-based polyamides from galactaric acid derivatives with elevated glass transition temperatures and their characterization, Polymer 124 (2017) 252-262
- Wróblewska, A.A.; Lingier, S.; Noordijk, J.; Du Prez, F.E.; De Wildeman, S.M.A.; Bernaerts, K.V., Polyamides based on a partially bio-based spirodiamine, submitted