Organic Polymers
Organic polymers are macromolecules composed of many repeating monomer units. Both synthetic and natural polymers play a crucial role in everyday life. Polysaccharides, polypeptides, and polynucleotides are the main types of biopolymers in living cells. These polymers are synthesized by enzyme-mediated processes in cells. In general, synthetic polymers are derived from monomers that contain either a multiple bond, or two or more functional groups, or a three-to seven- membered ring.. The chemical properties of the polymers are derived from their monomer units, while the physical properties of polymers are different. Polymers, depending on their physical properties, are characterised as thermoplastics, thermo sets, elastomers and fibres.Organic polymers have wide variety of uses, for example: polystyrene resins are used in the production of home electronics and appliances; nylon-6 is used in textile and plastic industries. Organic polymers such as polyethylene terephthalate are in the manufacture of popular PET bottles. Others such as neoprene are used in shoe soles and wet suits, polyvinyl chloride in pipes and Teflon in non-stick pans.
- suspension polymerization
- clustering of ions
- crosslinking polymerization
- Porous organic polymers
- Ablation of organic polymers
- Fluorescent Microporous Organic Polymers
- Microporous organic polymers
- Synthesis of Luminescent Covalent–Organic Polymers
- Metal organic polymers
- Porphyrin based porous organic polymers
Related Conference of Organic Polymers
Organic Polymers Conference Speakers
Recommended Sessions
- Biomaterials and Biocomposites
- Advanced Polymers
- Amorphous Polymers
- Biodegradable Polymers
- Bioplastics and Its Applications
- Bioplastics Applications
- Biopolymers as Materials
- Biopolymers for Tissue Engineering and Regenerative Medicine
- Biopolymers in Biofibers & Microbial Cellulose
- Cross Linked Polymers
- Green Composites in Biopolymers
- Linear Polymers
- Natural Polymers
- Ocean Plastics
- Organic Polymers
- Polymer Processing and Modelling
- Polymers Application in Medicine, Health, Biotechnology and others
- Synthetic Polymers
- Synthetic Polymers, Nanopolymers and Nanotechnology
Related Journals
Are you interested in
- Biofluid Flow Dynamics in Microfluidics - Microfluidics 2025 (France)
- Cell Sorting and Separation in Microfluidic Devices - Microfluidics 2025 (France)
- Fluid Mechanics in Microfluidic Devices - Microfluidics 2025 (France)
- High-Throughput Screening Using Microfluidics - Microfluidics 2025 (France)
- Lab-on-a-Chip Technologies for Diagnostics - Microfluidics 2025 (France)
- Microfluidic Biosensors for Disease Detection - Microfluidics 2025 (France)
- Microfluidic Devices for Environmental Monitoring - Microfluidics 2025 (France)
- Microfluidic Organ-on-a-Chip Models - Microfluidics 2025 (France)
- Microfluidic Platforms for DNA/RNA Analysis - Microfluidics 2025 (France)
- Microfluidic Systems for Protein Engineering - Microfluidics 2025 (France)
- Microfluidic Systems for Single-Cell Analysis - Microfluidics 2025 (France)
- Microfluidics for Drug Delivery and Nanomedicine - Microfluidics 2025 (France)
- Microfluidics for Personalized Medicine Applications - Microfluidics 2025 (France)
- Microfluidics in Cancer Research - Microfluidics 2025 (France)